Examveda

If V1, V2 and V3 be the volumes of a right circular cone. A sphere and a right circular cylinder having the same radius and same height then

A. $${V_1} = \frac{{{V_2}}}{4} = \frac{{{V_3}}}{3}$$

B. $$\frac{{{V_1}}}{2} = \frac{{{V_2}}}{3} = {V_3}$$

C. $$\frac{{{V_1}}}{3} = \frac{{{V_2}}}{2} = {V_3}$$

D. $$6{V_1} = 3{V_2} = 2{V_3}$$

Answer: Option D

Solution (By Examveda Team)

$$\eqalign{ & {\text{Volume of cone }}{V_1} = \frac{1}{3}\pi {r^2}h \cr & {\text{Volume of sphere }}{V_2} = \frac{4}{3}\pi {r^3} \cr & = \frac{2}{3}\pi {r^2}\left( {2r} \right)\,\,\,\,\,\left[ {\therefore h = 2r} \right] \cr & = \frac{2}{3}\pi {r^2}h \cr & {\text{Volume of cylinder }}{V_3} = \pi {r^2}h \cr & {\text{Cone}}\left( {\pi {r^2}h} \right) = 3{V_1} \cr & {\text{Sphere}}\left( {\pi {r^2}h} \right) = \frac{3}{2}{V_2} \cr & {\text{Cylinder}}\left( {\pi {r^2}h} \right) = {V_3} \cr & 3{V_1} = \frac{3}{2}{V_2} = {V_3} \cr & 6{V_1} = 3{V_2} = 2{V_3} \cr} $$

This Question Belongs to Arithmetic Ability >> Mensuration 3D

Join The Discussion

Related Questions on Mensuration 3D