If V1, V2 and V3 be the volumes of a right circular cone. A sphere and a right circular cylinder having the same radius and same height then
A. $${V_1} = \frac{{{V_2}}}{4} = \frac{{{V_3}}}{3}$$
B. $$\frac{{{V_1}}}{2} = \frac{{{V_2}}}{3} = {V_3}$$
C. $$\frac{{{V_1}}}{3} = \frac{{{V_2}}}{2} = {V_3}$$
D. $$6{V_1} = 3{V_2} = 2{V_3}$$
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & {\text{Volume of cone }}{V_1} = \frac{1}{3}\pi {r^2}h \cr & {\text{Volume of sphere }}{V_2} = \frac{4}{3}\pi {r^3} \cr & = \frac{2}{3}\pi {r^2}\left( {2r} \right)\,\,\,\,\,\left[ {\therefore h = 2r} \right] \cr & = \frac{2}{3}\pi {r^2}h \cr & {\text{Volume of cylinder }}{V_3} = \pi {r^2}h \cr & {\text{Cone}}\left( {\pi {r^2}h} \right) = 3{V_1} \cr & {\text{Sphere}}\left( {\pi {r^2}h} \right) = \frac{3}{2}{V_2} \cr & {\text{Cylinder}}\left( {\pi {r^2}h} \right) = {V_3} \cr & 3{V_1} = \frac{3}{2}{V_2} = {V_3} \cr & 6{V_1} = 3{V_2} = 2{V_3} \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion