P(4, 2) and R(-2, 0) are vertices of a rhombus PQRS. What is the equation of diagonal QS?
A. x - 3y = -2
B. 3x + y = 4
C. 3x + y = -4
D. x - 3y = 2
Answer: Option B
Solution (By Examveda Team)

Slope of line PR
$$\eqalign{ & \Rightarrow {m_1} = \frac{{0 - 2}}{{ - 2 - 4}} \cr & \Rightarrow {m_1} = \frac{{ - 2}}{{ - 6}} \cr & \Rightarrow {m_1} = \frac{1}{3} \cr} $$
∴ Slope of line QS = -3 = m2 {As it is perpendicular to PR}
Coordinates of point O
$$ \Rightarrow \left[ {\frac{{ - 2 + 4}}{2},\,\frac{{2 + 0}}{2}} \right] \Rightarrow \left( {1,\,1} \right)$$
∴ Equation of line QS which passes through point O(1, 1)
⇒ y - 1 = m2(x - 1)
⇒ y - 1 = -3(x - 1)
⇒ y - 1 = -3x + 3
⇒ 3x + y = 4
Related Questions on Coordinate Geometry
In what ratio does the point T(x, 0) divide the segment joining the points S(-4, -1) and U(1, 4)?
A. 1 : 4
B. 4 : 1
C. 1 : 2
D. 2 : 1
A. 2x - y = 1
B. 3x + 2y = 3
C. 2x + y = 2
D. 3x + 5y = 1
If a linear equation is of the form x = k where k is a constant, then graph of the equation will be
A. a line parallel to x-axis
B. a line cutting both the axes
C. a line making positive acute angle with x-axis
D. a line parallel to y-axis

Join The Discussion