Examveda
Examveda

The equation of a parabolic arch of span $$l$$ and rise h, is given by

A. $${\text{y}} = \frac{{\text{h}}}{{{l^2}}} \times \left( {1 - {\text{x}}} \right)$$

B. $${\text{y}} = \frac{{2{\text{h}}}}{{{l^2}}} \times \left( {1 - {\text{x}}} \right)$$

C. $${\text{y}} = \frac{{3{\text{h}}}}{{{l^2}}} \times \left( {1 - {\text{x}}} \right)$$

D. $${\text{y}} = \frac{{4{\text{h}}}}{{{l^2}}} \times \left( {1 - {\text{x}}} \right)$$

Answer: Option D


This Question Belongs to Civil Engineering >> Theory Of Structures

Join The Discussion

Comments ( 1 )

  1. Sabireen Afridi
    Sabireen Afridi :
    3 years ago

    correct equation is 4hx/l² × (L-x)

Related Questions on Theory of Structures

Y are the bending moment, moment of inertia, radius of curvature, modulus of If M, I, R, E, F and elasticity stress and the depth of the neutral axis at section, then

A. $$\frac{{\text{M}}}{{\text{I}}} = \frac{{\text{R}}}{{\text{E}}} = \frac{{\text{F}}}{{\text{Y}}}$$

B. $$\frac{{\text{I}}}{{\text{M}}} = \frac{{\text{R}}}{{\text{E}}} = \frac{{\text{F}}}{{\text{Y}}}$$

C. $$\frac{{\text{M}}}{{\text{I}}} = \frac{{\text{E}}}{{\text{R}}} = \frac{{\text{F}}}{{\text{Y}}}$$

D. $$\frac{{\text{M}}}{{\text{I}}} = \frac{{\text{E}}}{{\text{R}}} = \frac{{\text{Y}}}{{\text{F}}}$$