Solution (By Examveda Team)
$$\eqalign{
& {\text{Let}}\,{\text{the}}\,{\text{distance}}\,{\text{travelled}}\,{\text{by}}\,x\,{\text{km}} \cr
& {\text{Then}},\,\frac{x}{{10}} - \frac{x}{{15}} = 2 \cr
& \Rightarrow 3x - 2x = 60 \cr
& \Rightarrow x = 60\,km \cr
& {\text{Time}}\,{\text{taken}}\,{\text{to}}\,{\text{travel}}\,60\,km\,{\text{at}}\,10\,{\text{km/hr}} \cr
& = {\frac{{60}}{{10}}} \,hrs = 6\,hrs \cr
& {\text{So,}}\,{\text{Robert}}\,{\text{started}}\,{\text{6}}\,{\text{hours}}\,{\text{before}}\,2\,P.M.\,i.e.,\,at\,A.M. \cr
& \therefore {\text{Required}}\,{\text{speed}} \cr
& = {\frac{{60}}{5}} \,kmph = 12\,kmph \cr} $$
This is how i do.
Let time taken to reach home at 2= y
Case 1: Distance covered= 10y
case 2: Distance covered= 15(y-2)
Since distance is same,
10y=15(y-2)
y=6hrs
and, Distance= speed X time= 10 X 6= 60 kms
To reach @1, (y-1)= (6-1)= 5 hrs
required speed= 60÷5= 12 kms/hr