Examveda

The area bounded by the lines x = 0, y = 0, x + y = 1, 2x + 3y = 6 (in square units) is

A. 2

B. $$2\frac{1}{3}$$

C. $$2\frac{1}{2}$$

D. 3

Answer: Option C

Solution (By Examveda Team)

Area bounded by lines x = 0, y = 0, x + y = 1, 2x + 3y = 6 is
$$\eqalign{ & \Rightarrow 2x + 3y = 6 \cr & \Rightarrow \frac{{2x}}{6} + \frac{{3y}}{6} = 1 \cr & \Rightarrow \frac{x}{3} + \frac{y}{2} = 1 \cr} $$
Coordinate Geometry mcq question image
$$\eqalign{ & {\text{On drawing the lines on graph,}} \cr & \therefore {\text{Area bounded}} \cr & = \frac{1}{2} \times 3 \times 2 - \frac{1}{2} \times 1 \times 1 \cr & = 3 - \frac{1}{2} \cr & = \frac{5}{2} \cr & = 2\frac{1}{2}{\text{ sq}}{\text{. units}} \cr} $$

This Question Belongs to Arithmetic Ability >> Coordinate Geometry

Join The Discussion

Related Questions on Coordinate Geometry