The areas of three consecutive faces of a cuboid are 12 cm2, then the volume (in cm3) of the cuboid is
A. 3600
B. 100
C. 80
D. 24√3
Answer: Option D
Solution (By Examveda Team)
Let the three sides of the cuboid be $$l$$, b and h⇒ $$l$$b = bh = h$$l$$ = 12
⇒$$l$$2b2h2 = 12 × 12 × 12
⇒$$l$$2b2h2 = 1728
⇒ $$l$$bh = $$\sqrt {1728} $$
⇒ $$l$$bh = $$12\sqrt {12} $$
⇒ $$l$$bh = $$24\sqrt 3 {\text{ c}}{{\text{m}}^3}$$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion