The base of a right prism is an equilateral triangle. If the lateral surface area and volume are 120 cm2, 40√3 cm3 respectively then the side of base of the prism is
A. 4 cm
B. 5 cm
C. 7 cm
D. 40 cm
Answer: Option A
Solution (By Examveda Team)
Lateral surface area of prism = 120Base perimeter × height = 120
3 × (side) × height = 120
(Perimeter of equilateral Δ = 3 × side)
Side × height = $$\frac{{120}}{3}$$ = 40 . . . . . (i)
Volume of prism = 40√3
Area of base × height = 40√3
$$\frac{{\sqrt 3 }}{4}$$ (side)2 × height = 40√3
(side)2 × height = $$ = \frac{{40\sqrt 3 \times 4}}{{\sqrt 3 }}$$ = 160 . . . . . (ii)
Dividing equation (ii) by equation (i)
$$\frac{{{{\left( {{\text{side}}} \right)}^2} \times {\text{height}}}}{{{\text{side}} \times {\text{height}}}} = \frac{{160}}{{40}}$$
side = 4 cm
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion