Examveda

The base of right pyramid is an equilateral triangle, each side of which is 20 cm. Each slant edge is 30 cm. The vertical height (in cm) of the pyramid is:

A. $$10\sqrt 3 $$

B. $$10\sqrt {\frac{{23}}{3}} $$

C. $$5\sqrt {\frac{{23}}{3}} $$

D. $$5\sqrt 3 $$

Answer: Option B

Solution (By Examveda Team)

Mensuration 3D mcq question image
$$\eqalign{ & {\text{Length of eaeh side}} = 20\,{\text{cm }} \cr & {\text{Cireumradius}} = OC = \frac{a}{{\sqrt 3 }} = \frac{{20}}{{\sqrt 3 }} \cr & {\text{Slant edge}} = DC = 30{\text{ cm}} \cr & {\text{In }}\Delta ODC \cr & D{C^2} = O{D^2} + O{C^2} \cr & {30^2} = O{D^2} + {\left( {\frac{{20}}{{\sqrt 3 }}} \right)^2} \cr & O{D^2} = 900 - \frac{{400}}{3} \cr & OD = \sqrt {\frac{{2300}}{3}} \cr & OD = 10\sqrt {\frac{{23}}{3}} \cr} $$

This Question Belongs to Arithmetic Ability >> Mensuration 3D

Join The Discussion

Related Questions on Mensuration 3D