The base of right pyramid is an equilateral triangle, each side of which is 20 cm. Each slant edge is 30 cm. The vertical height (in cm) of the pyramid is:
A. $$10\sqrt 3 $$
B. $$10\sqrt {\frac{{23}}{3}} $$
C. $$5\sqrt {\frac{{23}}{3}} $$
D. $$5\sqrt 3 $$
Answer: Option B
Solution (By Examveda Team)

$$\eqalign{ & {\text{Length of eaeh side}} = 20\,{\text{cm }} \cr & {\text{Cireumradius}} = OC = \frac{a}{{\sqrt 3 }} = \frac{{20}}{{\sqrt 3 }} \cr & {\text{Slant edge}} = DC = 30{\text{ cm}} \cr & {\text{In }}\Delta ODC \cr & D{C^2} = O{D^2} + O{C^2} \cr & {30^2} = O{D^2} + {\left( {\frac{{20}}{{\sqrt 3 }}} \right)^2} \cr & O{D^2} = 900 - \frac{{400}}{3} \cr & OD = \sqrt {\frac{{2300}}{3}} \cr & OD = 10\sqrt {\frac{{23}}{3}} \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion