The curved surface area of a cylindrical pillar is 264 m2 and its volume is 924 m3 $$\left( {{\text{Taking }}\pi = \frac{{22}}{7}} \right).$$ Find the ratio of its diameter to its height
A. 7 : 6
B. 6 : 7
C. 3 : 7
D. 7 : 3
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & 2\pi rh = 264{\text{ }}{\text{. }}{\text{. }}{\text{. }}{\text{. }}{\text{. }}{\text{. }}\left( {\text{i}} \right) \cr & \pi {r^2}h = 924{\text{ }}{\text{. }}{\text{. }}{\text{. }}{\text{. }}{\text{. }}{\text{. }}\left( {{\text{ii}}} \right) \cr & {\text{On dividing}}:\frac{{2\pi rh}}{{\pi {r^2}h}} = \frac{{264}}{{924}} \cr & \frac{2}{r} = \frac{{264}}{{924}} \cr & r = \frac{{924 \times 2}}{{264}} \cr & r = 7{\text{ cm}} \cr & {\text{Diameter}} = 2r = 2 \times 7 = 14{\text{ cm}} \cr & {\text{Putting, }}r = 7{\text{ in equation }}\left( {\text{i}} \right) \cr & 2\pi rh = 264 \cr & h = \frac{{264 \times 7}}{{2 \times 22 \times 7}} \cr & h = 6{\text{ cm}} \cr & {\text{Required ratio}} = \frac{{2r}}{h} = \frac{{14}}{6} = \frac{7}{3} \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion