The curved surface area of a right circular cone is 2310 cm2 and its radius is 21 cm. If its radius is increased by 100% and height is reduced by 50%, then its capacity (in litres) will be (correct to one decimal place): $$\left( {{\text{Take }}\pi = \frac{{22}}{7}} \right)$$
A. 25.9
B. 28.2
C. 27.8
D. 26.7
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & {\text{Curved surface area of cone}} = \pi rl \cr & \frac{{22}}{7} \times 21 \times l = 2310 \cr & 66l = 2310 \cr & l = 35 \cr & {\text{Height}} = \sqrt {{{35}^2} - {{21}^2}} \cr & = \sqrt {1225 - 441} \cr & = \sqrt {784} \cr & = 28{\text{ cm}} \cr & {\text{New radius}} = 21 + 21 = 42{\text{ cm}} \cr & {\text{New height}} = 28 - 14 = 14{\text{ cm}} \cr & {\text{New volume}} = \frac{1}{3}\pi {r^2}h \cr & = \frac{1}{3} \times \frac{{22}}{7} \times 42 \times 42 \times 14 \cr & = 22 \times 42 \times 28 \cr & = 25872{\text{ c}}{{\text{m}}^3} \cr & {\text{Capacity}} = \frac{{25872}}{{1000}} = 25.9{\text{ litres}} \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion