The curved surface area of a right cylinder is 3696 cm2. Its height is three times its radius. What is the capacity (in liters) of the cylinder? $$\left( {{\text{Take }}\pi = \frac{{22}}{7}} \right)$$
A. 25.872
B. 30.87
C. 29.75
D. 19.008
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & r:h = 1:3 \cr & 2\pi rh = 3696 \cr & 2 \times \frac{{22}}{7} \times x \times 3x = 3696 \cr & 3{x^2} = \frac{{3696 \times 7}}{{44}} \cr & {x^2} = \frac{{1232 \times 7}}{{44}} \cr & {x^2} = \frac{{112 \times 7}}{4} \cr & {x^2} = 28 \times 7 \cr & x = 14 \cr & {\text{Volume}} = \pi {r^2}h \cr & = \frac{{22}}{7} \times {14^2} \times 42 \cr & = \frac{{22}}{7} \times 14 \times 14 \times 42 \cr & = 25872{\text{ c}}{{\text{m}}^3} \cr & = 25.872{\text{ L}} \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion