The distance between the places H and O is D units. The average speed that gets a person from H to O in a stipulated time is S units. He takes 20 minutes more time than usual if he travels at 60 km/h, and reaches 44 minutes early if he travels at 75 km/h. The sum of the numerical values of D and S is:
A. 358
B. 384
C. 376
D. 344
Answer: Option B
Solution (By Examveda Team)
Let right time for the train to cover its journey (in minutes) be $$t$$ hours, thenAs we know,
Distance = Speed × Time
According to the question,
$$\eqalign{ & 60 \times \left( {t + \frac{{20}}{{60}}} \right) = 75 \times \left( {t - \frac{{44}}{{60}}} \right) \cr & \Rightarrow 4\left( {t + \frac{1}{3}} \right) = 5\left( {t - \frac{{11}}{{15}}} \right) \cr & \Rightarrow 4t + \frac{4}{3} = 5t - \frac{{11}}{3} \cr & \Rightarrow 5t - 4t = \frac{{11}}{3} + \frac{4}{3} \cr & \Rightarrow t = \frac{{11 + 4}}{3} \cr & \Rightarrow t = 5{\text{ hours}} \cr & {\text{Distance }}\left( {\text{D}} \right) = 60 \times \left( {5 + \frac{{20}}{{60}}} \right) \cr & \Rightarrow {\text{D}} = 60 \times \left( {5 + \frac{1}{3}} \right) \cr & \Rightarrow {\text{D}} = 60 \times \frac{{16}}{3} \cr & \Rightarrow {\text{D}} = 320{\text{ km}} \cr} $$
Distance between H and O is 320 km
Average speed (S) = $$\frac{{320}}{5}$$ = 64 km/hr
∴ Sum of numerical value of D and S = 320 + 64 = 384
Related Questions on Speed Time and Distance
A. 48 min.
B. 60 min.
C. 42 min.
D. 62 min.
E. 66 min.
A. 262.4 km
B. 260 km
C. 283.33 km
D. 275 km
E. None of these
A. 4 hours
B. 4 hours 30 min.
C. 4 hours 45 min.
D. 5 hours

Join The Discussion