The graphs of the linear equations 3x - 2y = 8 and 4x + 3y = 5 intersect at the point P(α, β). What is the value of (2α - β)?
A. 3
B. 4
C. 6
D. 5
Answer: Option D
Solution (By Examveda Team)
$$\eqalign{ & 3{x_{ \times 3}} - 2{y_{ \times 3}} = {8_{ \times 2}} \to \left( {\text{i}} \right) \cr & \underline {4{x_{ \times 2}} + 3{y_{ \times 2}} = {5_{ \times 2}}} \to \left( {{\text{ii}}} \right) \cr & 17x = 34 \cr & x = 2 \cr & y = - 1 \cr & \left( {2\alpha - \beta } \right) = \left\{ {2\left( 2 \right) - \left( { - 1} \right)} \right\} = 4 + 1 = 5 \cr} $$Related Questions on Coordinate Geometry
In what ratio does the point T(x, 0) divide the segment joining the points S(-4, -1) and U(1, 4)?
A. 1 : 4
B. 4 : 1
C. 1 : 2
D. 2 : 1
A. 2x - y = 1
B. 3x + 2y = 3
C. 2x + y = 2
D. 3x + 5y = 1
If a linear equation is of the form x = k where k is a constant, then graph of the equation will be
A. a line parallel to x-axis
B. a line cutting both the axes
C. a line making positive acute angle with x-axis
D. a line parallel to y-axis

Join The Discussion