The hydraulic head that would produce a quick condition in a sand stratum of thickness 1.5 m, specific gravity 2.67 and voids ratio 0.67 is equal to
A. 1.0m
B. 1.5m
C. 2.0m
D. 3m
Answer: Option B
A. 1.0m
B. 1.5m
C. 2.0m
D. 3m
Answer: Option B
A. 3 months
B. 6 months
C. 12 months
D. 24 months
A. directly proportional to time and inversely proportional to drainage path
B. directly proportional to time and inversely proportional to square of drainage path
C. directly proportional to drainage path and inversely proportional to time
D. directly proportional to square of drainage path and inversely proportional to time
i=(G-1)/(1+e)
i=(2.67-1)/(1+0.67)
i=1.67/1.67
i=1
we know i = H/L
H/L=1
H=L
H= 1.5m
ie=G-1/1+e
Specific gravity G=2.67
Voids ratio e=0.67
ie=2.67-1/1+067=1.67/1.67=1
Hydraulic gradient=i=h/L
1=h/1.5
1*1.5=h, h=1.5
h/L =G-1/1+e
B
Yes c option is correct
Critical hydraulic gradient,
(ic)=(G-1)/(1+e)
=(2.67-1)/(1+0.67)=1
We know,
Hydraulic gradient,
i=h/L
=>1=h/1.5
=>h=1.5m
soil has bulky densityof 22kN/m and water content 10% the dry density of the soil is
15KN/m
20KN/m
30KN/m
35KN/m
h/l=g-1/1+e
h/1.5=2.67-1/1+0.67
h/1.5=1
h=1.5
h/l=g-1/1+e
h/1.5=2.67-1/1+0.67
h/1.5=1
h=1.5
Critical hydraulic gradient(i)=(G-1)/(1+e)=1 again i=h/L so here i=1,L=1.5 so h=1.5m
i/h=(G-1)/(1+e)
wrong answer its 1m.
i=(G-1)/(1+e)
What was the formula.?