Examveda

The internal energy of n moles of a gas is given $$E = \frac{3}{2}nRT - \frac{a}{V},$$    where V is the volume of the gas at temperature T and a is a positive constant. One mole of the gas in state (T1, V1) is allowed to expand adiabatically into vacuum to a final state (T2, V2). The temperature T2 is

A. $${T_1} + \frac{a}{R}\left( {\frac{1}{{{V_2}}} + \frac{1}{{{V_1}}}} \right)$$

B. $${T_1} - \frac{2}{3}\frac{a}{R}\left( {\frac{1}{{{V_2}}} - \frac{1}{{{V_1}}}} \right)$$

C. $${T_1} + \frac{2}{3}\frac{a}{R}\left( {\frac{1}{{{V_2}}} - \frac{1}{{{V_1}}}} \right)$$

D. $${T_1} - \frac{1}{3}\frac{a}{R}\left( {\frac{1}{{{V_2}}} - \frac{1}{{{V_1}}}} \right)$$

Answer: Option C


Join The Discussion

Related Questions on Thermodynamics and Statistical Physics

A system has two energy levels with energies E and 2E. The lower level is four-fold degenerate while the upper level is doubly degenerate. If there are N non-interacting classical particles in the system, which is in thermodynamic equilibrium at temperature T, the fraction of particles in the upper level is

A. $$\frac{1}{{1 + {e^{ - \varepsilon /{k_B}T}}}}$$

B. $$\frac{1}{{1 + 2{e^{\varepsilon /{k_B}T}}}}$$

C. $$\frac{1}{{2{e^{\varepsilon /{k_B}T}} + 4{e^{2\varepsilon /{k_B}T}}}}$$

D. $$\frac{1}{{2{e^{\varepsilon /{k_B}T}} - 4{e^{2\varepsilon /{k_B}T}}}}$$