The lateral surface area of frustum of a right circular cone if the area of its base is 16π cm2 and the diameter of circular upper surface is 4 cm and slant height 6 cm, will be
A. 30π cm2
B. 48π cm2
C. 36π cm2
D. 60π cm2
Answer: Option C
Solution (By Examveda Team)

Base Area = 16π
πR2 = 16π
R = 4
Given r = 2
∵ ΔABC ≅ ΔADE
$$\eqalign{ & \therefore \frac{{{\text{BC}}}}{{{\text{DE}}}} = \frac{{{\text{AC}}}}{{{\text{AE}}}} \cr & \frac{4}{8} = \frac{6}{{{\text{AE}}}} \cr & {\text{AE}} = 12 = {\text{L}} \cr} $$
Surface Area of frustum
= πRL - πr$$l$$
= π × 4 × 12 - π × 2 × 6
= 48π - 12π
= 36π
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion