The length of the side of a cube is 2.8 cm. What is the volume of the largest sphere that can be taken out of the cube?
A. 11.50 cm3
B. 1.15 cm3
C. 11.55 cm3
D. 115 cm3
Answer: Option A
Solution (By Examveda Team)
Side of cube = 2.8 cmThen radius of sphere $$ = \frac{{2.8}}{2} = 1.4{\text{ cm}}$$
Because, sphere be taken out of the cube.
⇒ Volume of sphere $$ = \frac{4}{3}\pi {r^3}$$
$$\eqalign{ & = \frac{4}{3} \times \frac{{22}}{7} \times 1.4 \times 1.4 \times 1.4 \cr & = \frac{{88 \times 0.392}}{3} \cr & = \frac{{34.496}}{3} \cr & = 11.498 \cr & = 11.50{\text{ c}}{{\text{m}}^3} \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion