Examveda

The partition function of a single gas molecule is $${{Z_\alpha }}$$ . The partition function of N such non-interacting gas molecules is then given by

A. $$\frac{{{{\left( {{Z_\alpha }} \right)}^N}}}{{N!}}$$

B. $${\left( {{Z_\alpha }} \right)^N}$$

C. $$N\left( {{Z_\alpha }} \right)$$

D. $$\frac{{{{\left( {{Z_\alpha }} \right)}^N}}}{N}$$

Answer: Option B


Join The Discussion

Related Questions on Thermodynamics and Statistical Physics

A system has two energy levels with energies E and 2E. The lower level is four-fold degenerate while the upper level is doubly degenerate. If there are N non-interacting classical particles in the system, which is in thermodynamic equilibrium at temperature T, the fraction of particles in the upper level is

A. $$\frac{1}{{1 + {e^{ - \varepsilon /{k_B}T}}}}$$

B. $$\frac{1}{{1 + 2{e^{\varepsilon /{k_B}T}}}}$$

C. $$\frac{1}{{2{e^{\varepsilon /{k_B}T}} + 4{e^{2\varepsilon /{k_B}T}}}}$$

D. $$\frac{1}{{2{e^{\varepsilon /{k_B}T}} - 4{e^{2\varepsilon /{k_B}T}}}}$$