The points A(3, -2), B(1, 4) and C(-2, x) are collinear. What is the value of x?
A. 13
B. -2
C. 5
D. 3
Answer: Option A
Solution (By Examveda Team)
A(3, -2), B(1, 4), C(-2, x)Condition for collinearity of three points
0 = x1(y2 - y3) + x2(y3 - y1) + x3(y1 - y2)
0 = 3(4 - x) + 1(x + 2) + (-2)(-2 - 4)
0 = 12 - 3x + x + 2 + 12
2x = 26
x = 13
Alternate Solution:
For collinear condition slope will be same
$$\eqalign{ & \frac{{{y_2} - {y_1}}}{{{x_2} - {x_1}}} = \frac{{{y_3} - {y_2}}}{{{x_3} - {x_2}}} \cr & \frac{{4 + 2}}{{1 - 3}} = \frac{{x - 4}}{{ - 2 - 1}} \cr & \frac{6}{{ - 2}} = \frac{{x - 4}}{{ - 3}} \cr & 9 = x - 4 \cr & x = 13 \cr} $$
Related Questions on Coordinate Geometry
In what ratio does the point T(x, 0) divide the segment joining the points S(-4, -1) and U(1, 4)?
A. 1 : 4
B. 4 : 1
C. 1 : 2
D. 2 : 1
A. 2x - y = 1
B. 3x + 2y = 3
C. 2x + y = 2
D. 3x + 5y = 1
If a linear equation is of the form x = k where k is a constant, then graph of the equation will be
A. a line parallel to x-axis
B. a line cutting both the axes
C. a line making positive acute angle with x-axis
D. a line parallel to y-axis

Join The Discussion