The radius and height of a right circular cone are in the ratio 3 : 4. If its curved surface area (in cm2) is 240π. Then its volume (in cm3) is:
A. 2304π
B. 384π
C. 1536π
D. 768π
Answer: Option D
Solution (By Examveda Team)
r : h = 3 : 4$$l$$ : r = 5 : 3

$$\eqalign{ & {\text{Curved surface area}} = \pi rl \cr & 240\pi = \pi \times 3x \times 5x \cr & {x^2} = 16 \cr & x = 4 \cr & \therefore r = 3 \times 4 = 12 \cr & {\text{Volume}} = \frac{1}{3}\pi {r^2}h \cr & = \frac{1}{3}\pi \times 144 \times 16 \cr & = 768\pi \cr} $$
Join The Discussion
Comments (1)
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$
144 how