The radius of a circle is 20% more than the height of a right-angled triangle. The base of the triangle is 36 cm. If the area of triangle and circle be equal, what will be area of circle ?
A. 72 cm2
B. 128 cm2
C. 144 cm2
D. 216 cm2
E. Cannot be determined
Answer: Option A
Solution (By Examveda Team)
Let the height of the triangle be x cmThen, radius of the circle = (120% of x) cm = $$\left( {\frac{{6x}}{5}} \right)$$ cm
$$\eqalign{ & \therefore \frac{1}{2} \times 36 \times x = \frac{{22}}{7} \times \frac{{6x}}{5} \times \frac{{6x}}{5} \cr & \Rightarrow x = \left( {\frac{{18 \times 7 \times 5 \times 5}}{{22 \times 6 \times 6}}} \right)cm \cr} $$
So, radius of the circle :
$$\eqalign{ & = \left[ {\frac{6}{5} \times \left( {\frac{{18 \times 7 \times 5 \times 5}}{{22 \times 6 \times 6}}} \right)} \right]cm \cr & = \left( {\frac{{105}}{{22}}} \right)cm \cr} $$
∴ Area of the circle :
$$\eqalign{ & = \left( {\frac{{22}}{7} \times \frac{{105}}{{22}} \times \frac{{105}}{{22}}} \right)c{m^2} \cr & = \left( {\frac{{1575}}{{22}}} \right)c{m^2} \cr & = 71.6\,c{m^2} \approx 72\,c{m^2} \cr} $$
Join The Discussion