The radius of the base and height of a right circular cone are in the ratio 5 : 12. If the volume of the cone is $$314\frac{2}{7}$$ cm3, the slant height (in cm) of the cone will be
A. 12
B. 13
C. 15
D. 17
Answer: Option B
Solution (By Examveda Team)
Let the radius and height be 5x and 12x$$\eqalign{ & \Rightarrow \frac{1}{3} \times \pi \times 25{x^2} \times 12x = \frac{{2200}}{7} \cr & \Rightarrow {x^3} = \frac{{2200 \times 7 \times 3}}{{7 \times 22 \times 25 \times 12}} \cr & \Rightarrow x = 1 \cr & \Rightarrow {\text{slant height}} \cr & = \sqrt {{5^2} + {{12}^2}} \cr & = 13{\text{ cm}} \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion