The radius of the base of a conical tent is 16 metres. If $$427\frac{3}{7}$$ sq. metre canvas is required to construct the tent, then the slant height of the tent is: $$\left( {{\text{take }}\pi = \frac{{22}}{7}} \right)$$
A. 17 metre
B. 15 metre
C. 19 metre
D. 8.5 metre
Answer: Option D
Solution (By Examveda Team)
Radius of cone (r) = 16 metre (given)Let slant height = $$l$$ metre
Curved surface area
$$\eqalign{ & \pi rl = 427\frac{3}{7}{\text{ }}{{\text{m}}^2}\,\,\left( {{\text{given}}} \right) \cr & \frac{{22}}{7} \times 16 \times l = \frac{{2992}}{7} \cr & l = \frac{{2992}}{{22 \times 16}} \cr & l = 8.5{\text{ metre}} \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion