Examveda

The radius of the base of a conical tent is 16 metres. If $$427\frac{3}{7}$$  sq. metre canvas is required to construct the tent, then the slant height of the tent is: $$\left( {{\text{take }}\pi = \frac{{22}}{7}} \right)$$

A. 17 metre

B. 15 metre

C. 19 metre

D. 8.5 metre

Answer: Option D

Solution (By Examveda Team)

Radius of cone (r) = 16 metre (given)
Let slant height = $$l$$ metre
Curved surface area
$$\eqalign{ & \pi rl = 427\frac{3}{7}{\text{ }}{{\text{m}}^2}\,\,\left( {{\text{given}}} \right) \cr & \frac{{22}}{7} \times 16 \times l = \frac{{2992}}{7} \cr & l = \frac{{2992}}{{22 \times 16}} \cr & l = 8.5{\text{ metre}} \cr} $$

This Question Belongs to Arithmetic Ability >> Mensuration 3D

Join The Discussion

Related Questions on Mensuration 3D