The radius of two circular cylinders are in the ratio 3 : 2 and the ratio of their volumes is 27 : 16. What is the ratio of their heights?
A. 8 : 9
B. 3 : 4
C. 4 : 3
D. 9 : 8
Answer: Option B
Solution (By Examveda Team)
$$\eqalign{ & {r_1}:{r_2} = 3:2 \cr & {v_1}:{v_2} = 27:16 \cr & {\text{Height}} \to {h_1}:{h_2} \cr & \frac{{9 \times {h_1}}}{{4 \times {h_2}}} = \frac{{27}}{{16}} \cr & \frac{{{h_1}}}{{{h_2}}} = \frac{3}{4} \cr & {h_1}:{h_2} = 3:4 \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion