The ratio of the volume of a cube to that of a sphere which will fit inside the cube is :
A. 4 : 3π
B. 4 : π
C. 6 : π
D. 2 : π
Answer: Option C
Solution (By Examveda Team)
Let the edge of the cube be aThen, volume of the cube = a3
Radius of the sphere $$ = \left( {\frac{a}{2}} \right)$$
Volume of the sphere :
$$\eqalign{ & = \frac{4}{3}\pi {\left( {\frac{a}{2}} \right)^3} \cr & = \frac{{\pi {a^3}}}{6} \cr} $$
∴ Required ratio :
$$\eqalign{ & = {a^3}:\frac{{\pi {a^3}}}{6} \cr & = 6:\pi \cr} $$
Related Questions on Volume and Surface Area
A. 12$$\pi$$ cm3
B. 15$$\pi$$ cm3
C. 16$$\pi$$ cm3
D. 20$$\pi$$ cm3
In a shower, 5 cm of rain falls. The volume of water that falls on 1.5 hectares of ground is:
A. 75 cu. m
B. 750 cu. m
C. 7500 cu. m
D. 75000 cu. m
A. 84 meters
B. 90 meters
C. 168 meters
D. 336 meters

Join The Discussion