The ratio of weights of two spheres of different materials is 8 : 17 and the ratio of weights per 1 cc of materials of each is 289 : 64. The ratio of radii of the two spheres is
A. 8 : 17
B. 4 : 17
C. 17 : 4
D. 17 : 8
Answer: Option A
Solution (By Examveda Team)

Ratio of volume of sphere × ratio of weight per 1 cc of material of each = Ratio of weight of two sphere
$$\eqalign{ & \frac{{\frac{4}{3}\pi r_1^3}}{{\frac{4}{3}\pi r_2^3}} \times \frac{{289}}{{64}} = \frac{8}{{17}} \cr & \frac{{r_1^3}}{{r_2^3}} = \frac{{8 \times 64}}{{17 \times 289}} \cr & \frac{{{r_1}}}{{{r_2}}} = \frac{{8 \times 8 \times 8}}{{17 \times 17 \times 17}} \cr & \frac{{{r_1}}}{{{r_2}}} = \frac{8}{{17}} \cr & {r_1}:{r_2} = 8:17 \cr} $$
Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion