The volume of a cuboid is twice that of a cube . If the dimensions of the cuboid are 9 cm, 8 cm and 6 cm, the total surface area of the cube is :
A. 72 cm2
B. 108 cm2
C. 216 cm2
D. 432 cm2
Answer: Option C
Solution (By Examveda Team)
Volume of the cuboid :$$\eqalign{ & = \left( {9 \times 8 \times 6} \right){\text{ c}}{{\text{m}}^3} \cr & = 432{\text{ c}}{{\text{m}}^3} \cr} $$
Volume of the cube :
$$\eqalign{ & = \left( {\frac{1}{2} \times 432} \right){\text{ c}}{{\text{m}}^3} \cr & = 216{\text{ c}}{{\text{m}}^3} \cr} $$
$$\eqalign{ & {a^3} = 216 \cr & a = \root 3 \of {216} \cr & a = 6 \cr & 6{a^2} = 6 \times {6^2} \cr & 6{a^2} = 216 \text{ cm}^2 \cr} $$
Join The Discussion