Thermodynamic variables of a system can be volume V, pressure p, temperature T, number of particles N, internal energy E and chemical potential μ, etc. For a system to be specified by Microcanonical (MC), Canonical Ensemble (CE) and Grand Canonical (GC) ensembles, the parameters required for the respective ensembles are
A. MC : (N, V, T); CE : (E, V, N); GC : (V, T, μ)
B. MC : (E, V, N); CE : (N, V, T); GC : (V, T, μ)
C. MC : (V, T, μ); CE : (N, V, T); GC : (E, V, N)
D. MC : (E, V, N); CE : (V, T, μ): GC : (N, V, T)
Answer: Option B
A. $$\frac{1}{{1 + {e^{ - \varepsilon /{k_B}T}}}}$$
B. $$\frac{1}{{1 + 2{e^{\varepsilon /{k_B}T}}}}$$
C. $$\frac{1}{{2{e^{\varepsilon /{k_B}T}} + 4{e^{2\varepsilon /{k_B}T}}}}$$
D. $$\frac{1}{{2{e^{\varepsilon /{k_B}T}} - 4{e^{2\varepsilon /{k_B}T}}}}$$
A. $$\frac{1}{6}{E_F}$$
B. $$\frac{1}{5}{E_F}$$
C. $$\frac{2}{5}{E_F}$$
D. $$\frac{3}{5}{E_F}$$
A. clockwise
B. counter-clockwise
C. neither clockwise nor counter-clockwise
D. clockwise from X → Y and counter-clockwise from Y → X
A. $$\exp \left( {\frac{{\hbar \omega }}{{{k_B}T}}} \right) + 1$$
B. $$\exp \left( {\frac{{\hbar \omega }}{{{k_B}T}}} \right) - 1$$
C. $${\left[ {\exp \left( {\frac{{\hbar \omega }}{{{k_B}T}}} \right) + 1} \right]^{ - 1}}$$
D. $${\left[ {\exp \left( {\frac{{\hbar \omega }}{{{k_B}T}}} \right) - 1} \right]^{ - 1}}$$

Join The Discussion