Examveda
Examveda

Two poles are ‘a’ metres apart and the height of one is double of the other. If from the middle point of the line joining their feet an observer finds the angular elevations of their tops to be complementary, then the height of the smaller is

A. $$\sqrt {2a} \,{\text{metres}}$$

B. $$\frac{a}{{2\sqrt 2 }}\,{\text{metres}}$$

C. $$\frac{a}{{\sqrt 2 }}\,{\text{metres}}$$

D. $$2a\,{\text{metres}}$$

Answer: Option B

Solution(By Examveda Team)

Let height of pole CD = h
and AB = 2h, BD = a
M is mid-point of BD
Height and Distance mcq solution image
$$\therefore DM = MB = \frac{a}{2}$$
$${\text{Let }}\angle CMD = \theta ,$$    $${\text{then }}\angle AMB = $$     $${90^ \circ } - \theta $$
$$\eqalign{ & {\text{Now}} \cr & \tan \theta = \frac{{CD}}{{DM}} = \frac{h}{{\frac{a}{2}}} = \frac{{2h}}{a}\,......({\text{i}}) \cr & {\text{and}} \cr & tan\left( {{{90}^ \circ } - \theta } \right) = \frac{{AB}}{{MB}} = \frac{{2h}}{{\frac{a}{2}}} = \frac{{4h}}{a} \cr & \Rightarrow \cot \theta = \frac{{4h}}{a}\,..........({\text{ii}}) \cr & {\text{Multiplying (i) and (ii)}} \cr & {\text{tan}}\theta \times {\text{cot}}\theta = \frac{{2h}}{a} \times \frac{{4h}}{a} \cr & 1 = \frac{{8{h^2}}}{{{a^2}}} = {h^2} = \frac{{{a^2}}}{8}\,m \cr & h = \sqrt {\frac{{{a^2}}}{8}} = \frac{a}{{\sqrt 8 }} = \frac{a}{{2\sqrt 2 }}\,m \cr} $$

This Question Belongs to Arithmetic Ability >> Height And Distance

Join The Discussion

Related Questions on Height and Distance