Two solid right cones of equal height and of radii r1 and r2 are melted and made to form a solid sphere of radius R. Then the height of the cone is
A. $$\frac{{4{R^2}}}{{r_1^2r_2^2}}$$
B. $$\frac{{4R}}{{{r_1}{r_2}}}$$
C. $$\frac{{4{R^3}}}{{r_1^2 + r_2^2}}$$
D. $$\frac{{{R^2}}}{{r_1^2r_2^2}}$$
Answer: Option C
Solution (By Examveda Team)
$$\eqalign{ & {\text{Let the height be }}H \cr & \Rightarrow \frac{1}{3}\pi r_1^2H + \frac{1}{3}\pi r_2^2H = \frac{4}{3}\pi {R^3} \cr & \Rightarrow \frac{1}{3}\pi H\left( {r_1^2 + r_2^2} \right) = \frac{4}{3}\pi {R^3} \cr & \Rightarrow H = \frac{{4{R^3}}}{{r_1^2 + r_2^2}} \cr} $$Related Questions on Mensuration 3D
A. 1.057 cm3
B. 4.224 cm3
C. 1.056 cm3
D. 42.24 cm3
A sphere and a hemisphere have the same volume. The ratio of their curved surface area is:
A. $${2^{\frac{3}{2}}}:1$$
B. $${2^{\frac{2}{3}}}:1$$
C. $${4^{\frac{2}{3}}}:1$$
D. $${2^{\frac{1}{3}}}:1$$

Join The Discussion