Examveda

Which among the following sets for Maxwell relation is correct? (U-internal energy, H-enthalpy, A-Helmholtz free energy and G-Gibbs free energy)

A. $$T = {\left( {\frac{{\partial U}}{{\partial V}}} \right)_S}{\text{ and }}p = {\left( {\frac{{\partial U}}{{\partial S}}} \right)_V}$$

B. $$V = {\left( {\frac{{\partial H}}{{\partial p}}} \right)_S}{\text{ and }}T = {\left( {\frac{{\partial H}}{{\partial S}}} \right)_p}$$

C. $$p = - {\left( {\frac{{\partial G}}{{\partial V}}} \right)_T}{\text{ and }}V = {\left( {\frac{{\partial G}}{{\partial p}}} \right)_S}$$

D. $$p = - {\left( {\frac{{\partial A}}{{\partial S}}} \right)_T}{\text{ and }}S = - {\left( {\frac{{\partial A}}{{\partial p}}} \right)_V}$$

Answer: Option B


Join The Discussion

Related Questions on Thermodynamics and Statistical Physics

A system has two energy levels with energies E and 2E. The lower level is four-fold degenerate while the upper level is doubly degenerate. If there are N non-interacting classical particles in the system, which is in thermodynamic equilibrium at temperature T, the fraction of particles in the upper level is

A. $$\frac{1}{{1 + {e^{ - \varepsilon /{k_B}T}}}}$$

B. $$\frac{1}{{1 + 2{e^{\varepsilon /{k_B}T}}}}$$

C. $$\frac{1}{{2{e^{\varepsilon /{k_B}T}} + 4{e^{2\varepsilon /{k_B}T}}}}$$

D. $$\frac{1}{{2{e^{\varepsilon /{k_B}T}} - 4{e^{2\varepsilon /{k_B}T}}}}$$