Examveda

Which of the following conditions should be satisfied by the temperature T of a system of N non-interacting particles occupying a volume V, for Bose-Einstein condensation to take place?
(where, m is the mass of each particle of the system, kB is the Boltzmann constant, h is the Planck's constant and $$\xi $$ is the well known zeta function.)

A. $$T < \frac{{{\lambda ^2}}}{{2\pi m{k_B}}}{\left[ {\frac{N}{{V\xi \left( {\frac{3}{2}} \right)}}} \right]^{\frac{3}{2}}}$$

B. $$T < \frac{{{\lambda ^2}}}{{2\pi m{k_B}}}{\left[ {\frac{V}{{N\xi \left( {\frac{3}{2}} \right)}}} \right]^{\frac{2}{3}}}$$

C. $$T < \frac{{{\lambda ^2}}}{{2\pi m{k_B}}}{\left[ {\frac{N}{{V\xi \left( {\frac{3}{2}} \right)}}} \right]^{\frac{1}{2}}}$$

D. $$T < \frac{{{\lambda ^2}}}{{2\pi m{k_B}}}{\left[ {\frac{V}{{N\xi \left( {\frac{3}{2}} \right)}}} \right]^{\frac{1}{2}}}$$

Answer: Option A


Join The Discussion

Related Questions on Thermodynamics and Statistical Physics

A system has two energy levels with energies E and 2E. The lower level is four-fold degenerate while the upper level is doubly degenerate. If there are N non-interacting classical particles in the system, which is in thermodynamic equilibrium at temperature T, the fraction of particles in the upper level is

A. $$\frac{1}{{1 + {e^{ - \varepsilon /{k_B}T}}}}$$

B. $$\frac{1}{{1 + 2{e^{\varepsilon /{k_B}T}}}}$$

C. $$\frac{1}{{2{e^{\varepsilon /{k_B}T}} + 4{e^{2\varepsilon /{k_B}T}}}}$$

D. $$\frac{1}{{2{e^{\varepsilon /{k_B}T}} - 4{e^{2\varepsilon /{k_B}T}}}}$$