61. Supply the two missing figures in order indicated by x and y in the given equation, the fractions being in their lowest terms.
$${\text{5}}\frac{1}{x} \times y\frac{3}{4} = 20$$
62. Find the value of $$\sqrt {248 + \sqrt {52 + \sqrt {144} } } = ?$$
63. If $$\sqrt {{\text{4096}}} $$ = 64, then the value of $$\sqrt {{\text{40}}{\text{.96}}} $$ $$ + $$ $$\sqrt {{\text{0}}{\text{.4096}}} $$ $$ + $$ $$\sqrt {{\text{0}}{\text{.004096}}} $$ $$ + $$ $$\sqrt {{\text{0}}{\text{.00004096}}} $$ up to two place of decimals is = ?
64. The difference of $${\text{1}}\frac{3}{{16}}$$ and its reciprocal is equal to = ?
65. Let a = (4 ÷ 3) ÷ 3 ÷ 4, b = 4 ÷ (3 ÷ 3) ÷ 4, c = 4 ÷ 3 ÷ (3 ÷ 4), The maximum value among the above three is?
66. $$\eqalign{
& {\text{If}} \cr
& {\text{I = }}\frac{3}{4} \div \frac{5}{6}{\text{,}} \cr
& {\text{II = 3}} \div \left[ {\left( {4 \div 5} \right) \div 6} \right]{\text{,}} \cr
& {\text{III = }}\left[ {{\text{3}} \div \left( {4 \div 5} \right)} \right] \div {\text{6,}} \cr
& {\text{IV = 3}} \div {\text{4}} \div \left( {5 \div 6} \right), \cr
& {\text{Then - }} \cr} $$
67. The least number that must be subtracted from 63522 to make the result a perfect square is = ?
68. The simplification of $$\frac{5}{{3 + \frac{3}{{1 - \frac{2}{3}}}}}\, = ?$$
69. Simplify : $$\left[ {\left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right) \times \left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right) - \left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right) \times \left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right)} \right] \div \left[ {\left( {1 + \frac{1}{{10 + \frac{1}{{10}}}}} \right) + \left( {1 - \frac{1}{{10 + \frac{1}{{10}}}}} \right)} \right] = ?$$
70. If the expression $${\text{2}}\frac{1}{2}{\text{ of }}\frac{3}{4} \times \frac{1}{2} \div \frac{3}{2} + \frac{1}{2} \div \frac{3}{2}\left[ {\frac{2}{3} - \frac{1}{2}{\text{ of }}\frac{2}{3}} \right]$$ is simplified, we get -
Read More Section(Simplification)
Each Section contains maximum 100 MCQs question on Simplification. To get more questions visit other sections.