21. The value of the quantity P, where $${\text{P}} = \int\limits_0^1 {{\text{x}}{{\text{e}}^{\text{x}}}{\text{dx,}}} $$   is equal to
						
					22. What is the value of $$\mathop {\lim }\limits_{{\text{x}} \to \frac{\pi }{4}} \frac{{\cos {\text{x}} - \sin {\text{x}}}}{{{\text{x}} - \frac{\pi }{4}}}$$
						
					23. The value of $$\mathop {\lim }\limits_{{\text{x}} \to \infty } {\left( {1 + {{\text{x}}^2}} \right)^{{{\text{e}}^{ - {\text{x}}}}}}$$   is
						
					24. For a right angled triangle, if the sum of the lengths of the hypotenuse and a side is kept constant, in order to have maximum area of the triangle, the angle between the hypotenuse and the side is
						
					25. The value of $$\mathop {\lim }\limits_{{\text{x}} \to 8} \frac{{{{\text{x}}^{\frac{1}{3}}} - 2}}{{\left( {{\text{x}} - 8} \right)}}$$
						
					26. The vector that is NOT perpendicular to the vectors (i + j + k) and (i + 2j + 3k) is . . . . . . . .
						
					27. Given $${\text{i}} = \sqrt { - 1} ,$$   what will be the evaluation of the definite integral $$\int_0^{\frac{\pi }{2}} {\frac{{\cos {\text{x}} + {\text{i}}\sin {\text{x}}}}{{\cos {\text{x}} - {\text{i}}\sin {\text{x}}}}} {\text{dx}}\,?$$
						
					28. At x = 0, the function $${\text{f}}\left( {\text{x}} \right) = \left| {\sin \frac{{2\pi {\text{x}}}}{{\text{L}}}} \right|$$   ,  (-$$\infty $$ < x < $$\infty $$, L > 0) is
						
					29. The value of $$\int_0^\infty  {\frac{1}{{1 + {{\text{x}}^2}}}} {\text{dx}} + \int_0^\infty  {\frac{{\sin {\text{x}}}}{{\text{x}}}} {\text{dx}}$$      is
						
					30. The values of the integrals $$\int\limits_0^1 {\left( {\int\limits_0^1 {\frac{{{\text{x}} - {\text{y}}}}{{{{\left( {{\text{x}} + {\text{y}}} \right)}^3}}}{\text{dy}}} } \right){\text{dx}}} $$     and $$\int\limits_0^1 {\left( {\int\limits_0^1 {\frac{{{\text{x}} - {\text{y}}}}{{{{\left( {{\text{x}} + {\text{y}}} \right)}^3}}}{\text{dx}}} } \right){\text{dy}}} $$     are
						
					Read More Section(Calculus)
Each Section contains maximum 100 MCQs question on Calculus. To get more questions visit other sections.
