Examveda
Examveda

In a triangle ABC, the internal bisector of the angle A meets BC at D. If AB = 4, AC = 3 and ∠A = 60°, then length of AD is :

A. $$2\sqrt 3 $$

B. $$\frac{{12\sqrt 3 }}{7}$$

C. $$\frac{{15\sqrt 3 }}{8}$$

D. $$\frac{{6\sqrt 3 }}{7}$$

E. None of these

Answer: Option B

Solution(By Examveda Team)

triangles mcq solution Aptitude7
Let BC = x and Ad = y, then as per bisector theorem,
$$\frac{{{\text{BD}}}}{{{\text{DC}}}} = \frac{{{\text{AB}}}}{{{\text{AC}}}} = \frac{4}{3}$$
Hence, BD = $$\frac{{4{\text{x}}}}{7}$$ and DC = $$\frac{{3{\text{x}}}}{7}$$
Now, in ΔABD using cosine rule,
$$\cos {30^ \circ } = \frac{{{4^2} + {{\text{y}}^2} - {\frac{{16{{\text{x}}^2}}}{{49}}} }}{{2 \times 3 \times {\text{y}}}}$$
$${\text{or,}}\,4\sqrt {3{\text{y}}} = {16 + {{\text{y}}^2} - {\frac{{16{{\text{x}}^2}}}{{49}}} } $$       - - - - - - (i)
Similarly in ΔADC,
$$\cos {30^ \circ } = \frac{{{3^2} + {{\text{y}}^2} - {\frac{{9{{\text{x}}^2}}}{{49}}} }}{{2 \times 3 \times {\text{y}}}}$$
$${\text{or,}}\,3\sqrt {3{\text{y}}} = {9 + {{\text{y}}^2} - {\frac{{9{{\text{x}}^2}}}{{49}}} } $$       - - - - - - - - (ii)
From equation (i) and (ii), we get
$${\text{y}} = \frac{{12\sqrt 3 }}{7}$$

This Question Belongs to Arithmetic Ability >> Triangles

Join The Discussion

Comments ( 1 )

  1. Govind Rao
    Govind Rao :
    7 years ago

    How can we use cosine rule if angle ADB not 90? My doubt is, if we use cos or sin then one of the angle must be 90. Pls help me with my doubt

Related Questions on Triangles