In ΔABC, AD is the internal bisector of ∠A, meeting the side BC at D. If BD = 5 cm, BC = 7.5 cm, then AB : AC is
A. 2 : 1
B. 1 : 2
C. 4 : 5
D. 3 : 5
Answer: Option A
Solution (By Examveda Team)
According to question,
By internal bisector property
$$\eqalign{ & \frac{{AB}}{{AC}} = \frac{{BD}}{{DC}} \cr & \frac{{AB}}{{AC}} = \frac{5}{{2.5}} \cr & \frac{{AB}}{{AC}} = \frac{2}{1} \cr & \therefore AB:AC = 2:1 \cr} $$
Internal bisector of a angle, bisect the opposite side of the angle, hence BD=CD