# A train passes a station platform in 36 seconds and a man standing on the platform in 20 seconds. If the speed of the train is 54 km/hr, what is the length of the platform?

A. 120 m

B. 240 m

C. 300 m

D. None of these

**Answer: Option B **

__Solution(By Examveda Team)__

$$\eqalign{
& {\text{Speed}} = {54 \times \frac{5}{{18}}} \,{\text{m/sec}} = 15\,{\text{m/sec}} \cr
& {\text{Length}}\,{\text{of}}\,{\text{the}}\,{\text{train}} = \left( {15 \times 20} \right){\text{m}} = 300\,{\text{m}} \cr
& {\text{Let}}\,{\text{the}}\,{\text{length}}\,{\text{of}}\,{\text{the}}\,{\text{platform}}\,{\text{be}}\,x\,{\text{metres}} \cr
& {\text{Then}},\,\frac{{x + 300}}{{36}} = 15 \cr
& \Rightarrow x + 300 = 540 \cr
& \Rightarrow x = 240\,{\text{m}} \cr} $$ ## Join The Discussion

## Comments ( 2 )

Related Questions on Problems on Trains

A. 120 metres

B. 180 metres

C. 324 metres

D. 150 metres

A. 45 km/hr

B. 50 km/hr

C. 54 km/hr

D. 55 km/hr

A. 200 m

B. 225 m

C. 245 m

D. 250 m

Why there multiply 20?? Why not 36

L=S*T=15*16=240M