Solution (By Examveda Team)
$$\eqalign{
& {\text{Let}}\,{\text{the}}\,{\text{speeds}}\,{\text{of}}\,{\text{the}}\,{\text{two}}\,{\text{trains}}\,{\text{be}}\,x\,{\text{m/sec}} \cr
& {\text{and}}\,y\,{\text{m/sec}}\,{\text{respectively}}. \cr
& {\text{Then,}}\,{\text{length}}\,{\text{of}}\,{\text{the}}\,{\text{first}}\,{\text{train}} = 27x\,{\text{metres}}, \cr
& {\text{and}}\,{\text{length}}\,{\text{of}}\,{\text{the}}\,{\text{second}}\,{\text{train}} = 17y\,{\text{metres}}. \cr
& \therefore \frac{{27x + 17y}}{{x + y}} = 23 \cr
& \Rightarrow 27x + 17y = 23x + 23y \cr
& \Rightarrow 4x = 6y \cr
& \Rightarrow \frac{x}{y} = \frac{3}{2} \cr} $$
Join The Discussion