Examveda
Examveda

A train passes two bridges of length 500 m and 250 m in 100 seconds and 60 seconds respectively. The length of the train is?

A. 152 m

B. 125 m

C. 250 m

D. 120 m

Answer: Option B

Solution(By Examveda Team)

$$\eqalign{ & {\text{Let the length of train }}x{\text{ m }} \cr & {\text{Speed of train }} \cr & {\text{ = }}\frac{{\left( {{\text{Length of train + length of bridge }}} \right)}}{{{\text{Time taken in crossing}}}}{\text{ }} \cr & {\text{According to information we get}} \cr & \Rightarrow \frac{{x + 500}}{{100}} = \frac{{x + 250}}{{60}} \cr & \Rightarrow 60\left( {x + 500} \right) = 100\left( {x + 250} \right) \cr & \Rightarrow 3\left( {x + 500} \right) = 5\left( {x + 250} \right) \cr & \Rightarrow 5x + 1250 = 3x + 1500 \cr & \Rightarrow 5x - 3x = 1500 - 1250 \cr & \Rightarrow 2x = 250 \cr & \Rightarrow x = \frac{{250}}{2} = 125\,{\text{m}} \cr} $$

Join The Discussion

Related Questions on Problems on Trains