An article is sold at 25 percent loss. If its cost price is doubled and selling price is increased by Rs. 660, then there is a profit of 20 percent. What is the original cost price of the article?
A. Rs. 400
B. Rs. 360
C. Rs. 480
D. Rs. 500
Answer: Option A
Solution (By Examveda Team)
$$\eqalign{ & {\bf{Given:}} \cr & \frac{{{\text{CP}} - {\text{SP}}}}{{{\text{CP}}}} \times 100 = 25 - - - \left( 1 \right) \cr & \frac{{{\text{SP}} + 660 - 2{\text{CP}}}}{{2{\text{CP}}}} \times 100 = 20 - - - \left( 2 \right) \cr & {\bf{Formula}}\,{\bf{used:}} \cr & {\text{Profit }}\% = \frac{{{\text{Profit}}}}{{{\text{CP}}}} \times 100 \cr & {\text{Loss }}\% = \frac{{{\text{Loss}}}}{{{\text{CP}}}} \times 100 \cr & {\text{Profit}} = {\text{SP}} - {\text{CP}} \cr & {\text{Loss}} = {\text{CP}} - {\text{SP}} \cr & {\text{CP}} = {\text{Cost price}} \cr & {\text{SP}} = {\text{Selling price}} \cr & {\bf{Solution:}} \cr & {\text{Let's solve the first equation,}} \cr & 1 - \frac{{{\text{SP}}}}{{{\text{CP}}}} = 0.25 \cr & \frac{{{\text{SP}}}}{{{\text{CP}}}} = 0.75 \cr & {\text{SP}} = 0.75{\text{CP}} \cr & {\text{Now, let's put the value of SP in the second equation,}} \cr & \frac{{0.75{\text{CP}} + 660 - 2{\text{CP}}}}{{2{\text{CP}}}} \times 100 = 20 \cr & \frac{{660 - 1.25{\text{CP}}}}{{2{\text{CP}}}} = 0.2 \cr & 660 - 1.25{\text{CP}} = 0.4{\text{CP}} \cr & {\text{CP}} = \frac{{660}}{{1.65}} \cr & {\text{CP}} = 400 \cr & {\text{The original cost price is Rs}}{\text{. 400}} \cr} $$Related Questions on Profit and Loss
A. 45 : 56
B. 45 : 51
C. 47 : 56
D. 47 : 51
A. Rs. 2600
B. Rs. 2700
C. Rs. 2800
D. Rs. 3000
A. A neither losses nor gains
B. A makes a profit of 11%
C. A makes a profit of 20%
D. B loses 20%
A. Rs. 3,750
B. Rs. 3,250
C. Rs. 2,750
D. Rs. 2,250

Join The Discussion