Profit on selling 10 candles equals selling price of 3 bulbs. While loss on selling 10 bulbs equal selling price of 4 candles. Also profit percentage equals to the loss percentage and cost of a candle is half of the cost of a bulb. What is the ratio of selling price of candles to the selling price of a bulb?
A. 5 : 4
B. 3 : 2
C. 4 : 5
D. 3 : 4
Answer: Option B
Solution (By Examveda Team)
Candle - - - - - - - - BulbCP . . . . A - - - - - - - - B
SP . . . . C - - - - - - - - D
$$\eqalign{ & and.\,C = 2A \cr & {\text{Profit}} = 10\left( {B - A} \right) = 3D \cr & {\text{Loss}} = 10\left( {C - D} \right) = 4B \cr & {\text{Profit}}\% = \frac{{ {3D \times 100} }}{{10A}} \cr & {\text{Loss}}\% = \frac{{ {4B \times 100} }}{{10C}} \cr & {\text{Now,}}\,{\text{By}}\,{\text{the}}\,{\text{questions}}, \cr & \frac{{ {3D \times 100} }}{{10A}} = \frac{{ {4B \times 100} }}{{10C}} \cr & \frac{B}{D} = \frac{3}{2} = 3:2 \cr} $$
Profit on selling 10 candles = 10(b-a) = 3d
Loss on selling 10 bulbs = 10(c-d) = 4b
if we solve these two eqs we get b=d(c=2a)