Answer & Solution
Answer: Option C
Solution:
Let the man's rate upstream be
x kmph and that downstream be
y kmph.
Then, distance covered upstream in 8 hrs 48 min = Distance covered downstream in 4 hrs.
$$\eqalign{
& \Rightarrow {x \times 8\frac{4}{5}} = {y \times 4} \cr
& \Rightarrow \frac{{44}}{5}x = 4y \cr
& \Rightarrow y = \frac{{11}}{5}x \cr
& \therefore {\text{Required}}\,{\text{ratio}} \cr
& = {\frac{{y + x}}{2}} : {\frac{{y - x}}{2}} \cr
& = \left( {\frac{{16x}}{5} \times \frac{1}{2}} \right):\left( {\frac{{6x}}{5} \times \frac{1}{2}} \right) \cr
& = \frac{8}{5}:\frac{3}{5} \cr
& = 8:3 \cr} $$